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Model-Wise Double Descent Role 1: Poor Conditioning Reduces Double Descent

Random features: Z = ¢(X - W) (W is fixed)

Omax(Z)
Omin(Z)
the minimum singular values of Z.)

Double descent generalization curve: The
generalization error peaks when the number of
parameters (P) equals the number of data points (N).

Condition number: k(Z) = (0 qx @aNd 0,57, are the maximum and

_ . Normalization of the features:
Classical generalization curve: The generalization

error decreases monotonically as the number of
parameters (P) increases w.r.t. the training dataset
size (N). 09

X —mean(X)
std(X)

Xnormalized =

Cosine random features

= Jnnormalized
- Normalized

—  [Double descent
0.8 — == Monotonic
Interpolation threshold

Umax/ Omin
—
o

Test Error

0.7

—
O_\

0.6
0 1 2 3 | 0 1 2

0.5

A low-loss minimum is found

Test Error

The same result holds for ReLU and other non-linear

0.4 functions.

0.3 Similar results hold for other operations that change the

condition number of Z, such as scaling the features X or
initializing the random matrix W with a different
variance. See paper for more plots.

0.2
Unable to find

a low-loss minimum 0

We show that double descent is observed if and only
if the optimization setting is able to find a
sufficiently low-loss minimum around P/N = 1.

Take-away: Operations leading to poor condition
(high condition number) reduce and eliminate double
descent.

Role 2: Slow-Convergence Optimization Settings Reduce the Peak . .
Take-away: For SGD with a fixed number of

iterations, the following hyperparameter conditions

Random (RelLU) feature regression models varying learning rate, batch size, and optimization algorithms
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o ; Optimization algorithms that struggle to find a low
8 s g 10° g " minimum also have a similar effect (see plot to left).
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Double Descent Still Occurs, But Slowly

Normalization
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We find consistent behavior on both random
feature models (linear to input) and two-layer
neural networks.

:We conclude that double descent:

11) Requires particular proper settings to occur;
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" 02 &* B — I3) Can be easily mitigated by stopping earlier without
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Given 1) poorly conditioned problems or 2) slow-convergence
settings, double descent ultimately emerges after a large 0.0
number of iterations (200-400 times longer after convergence).
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