
Model-Wise Double Descent

Double descent generalization curve: The
generalization error peaks when the number of
parameters (𝑃) equals the number of data points (𝑁).
Classical generalization curve: The generalization 
error decreases monotonically as the number of 
parameters (𝑃) increases w.r.t. the training dataset 
size (𝑁).

We show that double descent is observed if and only
if the optimization setting is able to find a
sufficiently low-loss minimum around P/N = 1.

Role 1: Poor Conditioning Reduces Double Descent

Understanding the Role of Optimization in Double Descent
Chris Yuhao Liu & Jeffrey Flanigan
University of California, Santa Cruz

Role 2: Slow-Convergence Optimization Settings Reduce the Peak

Double Descent Still Occurs, But Slowly

Random features: 𝑍 = 𝜙(𝑋 ⋅ 𝑾!) (𝑾 is fixed)

Normalization of the features:

𝑋"#$%&'()*+ =
𝑋 −𝑚𝑒𝑎𝑛(𝑋)

𝑠𝑡𝑑(𝑋)

Condition number: 𝜅 𝑍 = ,!"#(.)
,!$%(.)

(𝜎%&0 and 𝜎%(" are the maximum and

the minimum singular values of 𝑍.)

Take-away: Operations leading to poor condition
(high condition number) reduce and eliminate double
descent.

We conclude that double descent:
1) Requires particular proper settings to occur;
2) Emerges slowly after the training error converges to zero;
3) Can be easily mitigated by stopping earlier without
harming model convergence in practice.

We find consistent behavior on both random
feature models (linear to input) and two-layer
neural networks.

Take-away: For SGD with a fixed number of
iterations, the following hyperparameter conditions 
slow down the convergence of the training loss, 
thereby gradually making the generalization curve
monotonic while achieving 0 training error:
• Small weight initialization
• Small learning rate
• Aggressive learning rate decay
• Large batch size

Optimization algorithms that struggle to find a low
minimum also have a similar effect (see plot to left).

A low-loss minimum is found

Unable to find
a low-loss minimum

Random (ReLU) feature regression models varying learning rate, batch size, and optimization algorithms

Cosine random features

• The same result holds for ReLU and other non-linear
functions.

• Similar results hold for other operations that change the 
condition number of 𝑍, such as scaling the features 𝑋 or
initializing the random matrix 𝑾 with a different
variance. See paper for more plots.

Time evolution of training a random ReLU feature model

Given 1) poorly conditioned problems or 2) slow-convergence
settings, double descent ultimately emerges after a large
number of iterations (200-400 times longer after convergence).


